
w w w . c r c p r e s s . c o m

93665

6000 Broken Sound Parkway, NW 
Suite 300, Boca Raton, FL 33487
711 Third Avenue 
New York, NY 10017
2 Park Square, Milton Park 
Abingdon, Oxon OX14 4RN, UK

an informa business

w w w . c r c p r e s s . c o m

Edited by Gordon Cheng

Cheng

FRONTIERS IN NEUROENGINEERING

HUMANOID ROBOTICS and
NEUROSCIENCE
SCIENCE, ENGINEERING and SOCIETY

HUMANOID ROBOTICS and NEUROSCIENCE

Humanoid robots are highly sophisticated machines equipped with human-
like sensory and motor capabilities. Today we are on the verge of a new era of 
rapid transformations in both science and engineering—one that brings together 
technological advancements in a way that will accelerate both neuroscience and 
robotics. Humanoid Robotics and Neuroscience: Science, Engineering and 
Society presents the contributions of prominent scientists who explore key aspects 
of the further potential of these systems.

Topics include:

•	 Neuroscientific research findings on dexterous robotic hand control

•	 Humanoid vision and how understanding the structure of the human eye  
can lead to improvements in artificial vision 

•	 Humanoid locomotion, motor control, and the learning of motor skills

•	 Cognitive elements of humanoid robots, including the neuroscientific aspects  
of imitation and development

•	 The impact of robots on society and the potential for developing new systems 
and devices to benefit humans

The use of humanoid robotics can help us develop a greater scientific understanding 
of humans, leading to the design of better engineered systems and machines for 
society. This book assembles the work of scientists on the cutting edge of robotic 
research who demonstrate the vast possibilities in this field of research.

NEUROSCIENCE

93665_cover.indd   1 11/7/14   12:18 PM



P1: RAZI

November 18, 2014 9:20 K16584 93665˙C000



P1: RAZI

November 18, 2014 9:20 K16584 93665˙C000



P1: RAZI

November 18, 2014 9:20 K16584 93665˙C000



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20141113

International Standard Book Number-13: 978-1-4200-9367-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. While all reasonable 
efforts have been made to publish reliable data and information, neither the author[s] nor the publisher can 
accept any legal responsibility or liability for any errors or omissions that may be made. The publishers wish 
to make clear that any views or opinions expressed in this book by individual editors, authors or contributors 
are personal to them and do not necessarily reflect the views/opinions of the publishers. The information or 
guidance contained in this book is intended for use by medical, scientific or health-care professionals and is 
provided strictly as a supplement to the medical or other professional’s own judgement, their knowledge of 
the patient’s medical history, relevant manufacturer’s instructions and the appropriate best practice guide-
lines. Because of the rapid advances in medical science, any information or advice on dosages, procedures 
or diagnoses should be independently verified. The reader is strongly urged to consult the relevant national 
drug formulary and the drug companies’ printed instructions, and their websites, before  administering 
any of the drugs recommended in this book. This book does not indicate whether a particular treatment is 
appropriate or suitable for a particular individual. Ultimately it is the sole responsibility of the medical pro-
fessional to make his or her own professional judgements, so as to advise and treat patients appropriately. The 
authors and publishers have also attempted to trace the copyright holders of all material reproduced in this 
publication and apologize to copyright holders if permission to publish in this form has not been obtained. 
If any copyright material has not been acknowledged please write and let us know so we may rectify in any 
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, 
including photocopying, microfilming, and recording, or in any information storage or retrieval system, 
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used 
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com



P1: RAZI

November 18, 2014 9:20 K16584 93665˙C000

Contents

Series Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .vii

The Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Contributors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xi

SECTION I Humanoid Robotics Perspective
to Neuroscience

Chapter 1 Humanoid Robotics and Neuroscience: Science
Engineering, and Society . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Gordon Cheng

Chapter 2 Humanoid Brain Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29

Erhan Oztop, Emre Ugur, Yu Shimizu, and Hiroshi Imamizu

SECTION II Emulating the Neuro-Mechanisms with
Humanoid Robots

Chapter 3 Hands, Dexterity, and the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49

Helge Ritter and Robert Haschke

Chapter 4 Stochastic Information Processing that Unifies Recognition
and Generation of Motion Patterns: Toward Symbolical
Understanding of the Continuous World . . . . . . . . . . . . . . . . . . . . . . . . . 79

Tetsunari Inamura and Yoshihiko Nakamura

Chapter 5 Foveal Vision for Humanoid Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

Ales Ude

Chapter 6 Representation and Control of the Task Space in Humans
and Humanoid Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121

Michael Mistry and Stefan Schaal

v



P1: RAZI

November 18, 2014 9:20 K16584 93665˙C000

vi Contents

Chapter 7 Humanoid Locomotion and the Brain . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Jun Morimoto

Chapter 8 Humanoid Motor Control: Dynamics and the Brain . . . . . . . . . . . . . .183

Sang-Ho Hyon

SECTION III Leaping Forward: Toward Cognitive
Humanoid Robots

Chapter 9 Learning from Examples: Imitation Learning and
Emerging Cognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233

Yasuo Kuniyoshi

Chapter 10 Toward Language: Vocalization by Cognitive
Developmental Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

Minoru Asada

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275



P1: RAZI

November 18, 2014 9:20 K16584 93665˙C000

Series Preface
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as computational neuroscience and neuroengineering, and describes breakthroughs
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Each book is edited by an expert and consists of chapters written by leaders in a
particular field. The books are richly illustrated and contain comprehensive bibliogra-
phies. The chapters provide substantial background material relevant to the particular
subject.

We hope that, as the volumes become available, our efforts as well as those of the
publisher, the book editors, and the individual authors will contribute to the further
development of brain research. The extent to which we achieve this goal will be de-
termined by the utility of these books.
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Series Editor
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1 Humanoid Robotics and
Neuroscience: Science,
Engineering, and Society
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4 Humanoid Robotics and Neuroscience: Science, Engineering and Society

1.1 INTRODUCTION

Ever since the dawn of civilization, we as humans have been fascinated with machines
and devices that can replicate aspects of biology, in particular of ourselves. Some are
created for our entertainment, some to facilitate us in our daily lives, and historically
speaking some were even created for imitating the power of gods (religious relics)
[1]. The themes of these developments have gone in and out of trends in various
forms, but the most fundamental issues were to explore points toward the eventuation
of robotics as we know it today.

We are on the verge of a new era of rapid transformations in both science and
engineering, a transformation that brought together technological advancements in
a fusion that shall accelerate both science and engineering. This new transfor-
mation brings together scientists working under a new direction of robotic
research.

The utility of robots holds great promise not only in industrial automation; more
recently it has also been taken on by neuroscientists as a tool to aid in the dis-
covery of mechanisms in the human brain. In particular, with the emergence of
numerous advanced humanoid robots, unlike usual robotic systems, these are
highly sophisticated humanlike machines equipped with humanlike sensory and
motor capabilities. These robots are now among us, contributing to our scientific
endeavors.

Aiming at better assisting mankind has motivated engineers to look more closely
at other scientific findings for the creation of innovative solutions that could better
co-exist in our common society.

1.1.1 OUR RESEARCH PARADIGM

In essence, here we advocate three essential interconnecting themes in our research
paradigm:

• In science: Building a humanlike machine and the reproduction of humanlike
behaviors can in turn teach us more about how humans deal with the world,
and the plausible mechanisms involved.

• In engineering: Engineers can gain a great deal of understanding through
the studies of biological systems, which can provide guiding principles for
developing sophisticated and robust artificial systems.

• For society: In so doing we will gain genuine knowledge toward the devel-
opment of systems that can better serve our society.

Such an approach will examine in depth various issues that go beyond the pure
engineering of a robot and will require the integration of multiple disciplines in
exploring and exploiting what has been learned from other fields such as philosophy,
neuroscience, psychology, and physiology among others. It is foreseeable that this
multidisciplinary integration approach will examine in depth:

• How do humans handle all different types of interaction with ease and in
such a competent manner?
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FIGURE 1.1 Research paradigm: Science, engineering, and society. See color insert.

• How can such a rich system be built?
• What are the underlying mechanisms?

– What are the underlying processes and controls?
• How can we benefit from this approach?

1.1.2 ROBOTS IN THE REAL WORLD

Recently robots have been moving off the factory floors and into our homes. Possibly
one day these robotic systems will help us in our daily lives, also as ideal research tools.
During the late 1990s a revitalization of interest in the building of humanlike robots
has emerged. This resurgence of interest has produced a vast number of spectacular
humanoid systems. Here we highlight some of these recent systems.

Behaviours

Providing benchmarks

Neuropsychology/
Cognitive science

Humanoid
robotics

Computer
science Engineering

sciences
Material
science

Motor
control

Neuroscience/
Neurobiology

Providing organisational
structures

Engineering building
blocks

Neuronal circuit/
functional units

FIGURE 1.2 A multidisciplinary integration approach bringing together robotics and neu-
roscience.
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FIGURE 1.3 SONY robotic dog, AIBO. (Courtesy of SONY. With permission.)

1.1.2.1 Entertainment Robots

Electronic SONY was one of the biggest manufacturers who introduced one of the
first devices for home robot entertainment. In 1999, SONY introduced a four-legged
doglike robot, AIBO, into the mass market as companions for people. These small-
size entertainment (see Figure 1.3) robots have enjoyed worldwide acceptance. In
the 2000s, SONY introduced a humanlike robot as the next generation of entertain-
ment robots to the world (see Figure 1.4). It was a highly sophisticated integrated
system, equipped with stereo cameras for eyes, microphones for ears, and an array of
capabilities including walking and dancing [2].

Animatronics, one of the first nonindustrial companies in the area of animatronics,
and entertainment companies such as Disney and MGM Studios are just a few who

FIGURE 1.4 SONY humanoid robot SDR-4. (Courtesy of SONY. With permission.)
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FIGURE 1.5 Iguana, an animatronics entertainment robot. (Courtesy of Stephen C. Jacobsen,
SARCOS. With permission.). An animatronics character in the form of an iguana, operates on
a daily basis at the RC Willey Restaurant.

have utilized robotic technology within part of the venue to entertain all ages. One
active group that has been supplying sophisticated robotic systems is the Utah com-
pany SARCOS. Their range of development includes full-body animatronics figures
that can produce realistic human motions. They have also developed robotic animals
from insects, singing birds, and iguanas (see, e.g., Figure 1.5) to full-size human
figures.

A SARCOS humanoid figure (see Figure 1.6) [3] was designed specifically for the
FORD Motor Company in 1995; this highly sophisticated system traveled to motor
shows across North America and Europe from 1995 to 1997.

1.1.3 HUMANOID ROBOTS IN RESEARCH

In this section we present some existing humanoid systems in research and briefly
outline some of their approaches and achievements.

In December 1996, one of the highest impacts to robotics in recent times was made
by the Japanese motor company Honda Motor Co., Ltd.: the release and announce-
ment of a 15-year project which produced a full-size humanoid robotic system (see
Figure 1.7) that was able to walk autonomously and climb stairs [4, 5]. This level
of achievement set a standard for the engineering of highly sophisticated humanoid
robots for years to follow.

1.1.3.1 Humanoid Service Robots

One avenue of humanoid research has been considering humanoids as ideal service
robots. Taking the view that much of our everyday environment has been specifically
designed for the use of humans, these humanlike robots would ideally be suitable
for performing daily chores usually done by humans. This type of robot has been
considered to be the most suitable to assist mankind with daily activities.
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FIGURE 1.6 The FORD. (Courtesy of Stephen C. Jacobsen, SARCOS. With permission.)

The humanoid robot ARMAR (see Figure 1.8a) is a series of humanoid robots
developed at the Karlsruhe Institute of Technology (KIT) [6, 7]. It was developed in
targeting the introduction of such robots in the kitchen environment; for instance, it
is even capable of loading dishes in a dishwasher.

The humanoid robot HERMES (see Figure 1.8b), developed by the Institute of
Measurement Science, Bundeswehr University Munich, Germany [8, 9] provided an-
other interesting aspect of service robots; one of the primary aspects of this particular
system is that they aim for reliability. This system is able to text-to-speech interface.
The AMI humanoid robot from the Korea Advanced Institute of Science and Tech-
nology (KAIST) [10] is a humanoid that is capable of a few household tasks, such as
vacuuming (see Figure 1.8c).

At a further extreme both the Japanese and the Korean governments have decided
to support projects related to humanoid robots that can facilitate society. A five–year
project supported by the Ministry of Economy, Trade and Industry (METI) through
the New Energy and Industrial Technology Development Organization (NEDO) of
Japan, the Humanoid Robotics Project (HRP) was established to investigate possi-
ble “applications” for humanoid robots. They set out to examine five scenarios: (1)
maintenance tasks of industrial plants, (2) teledriving of construction machines, (3)
security service at home and office, (4) taking care of patients, and (5) cooperative
works in the open air [11, 12]. The total robotic system was designed and integrated by
Kawada Industries, Inc. together with the Humanoid Research Group of the National
Institute of Advanced Industrial Science and Technology (AIST) [13].
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FIGURE 1.7 Humanoid robots P3 and ASIMO (Advance). (Courtesy of HONDA. With
permission.)

The NASA Johnson Space Center in the United States is developing a humanoid
upper body robot for use in space. They have designed the humanoid robot, Robonaut
[14]. The primary objective of this system is to perform extravehicular activity (EVA).
This sets the scene for future service robots in space.

1.1.3.2 Humanoid Robots as Research Tools

Although most robotic systems presented here are from research laboratories, many
of them aim not just to build humanoid robots for the sake of constructing better
machines. A number of these research laboratories are investigating issues beyond

FIGURE 1.8 Service-style humanoid robots. (a): ARMAR. (Courtesy of Tamim Asfour.
With permission.); (b) HERMES. (Courtesy of Rainer Bischoff. With permission.); (c) AMI
humanoid robot. (Courtesy of Hyun S. Yang, KAIST. With permission.)
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FIGURE 1.9 The ETL-Humanoid system. (Courtesy of Yasuo Kuniyoshi. With permission.)
See color insert.

the engineering of systems; exploration is also underway in areas such as intelli-
gent/cognition as well as basic science (thus, the research paradigm of “understanding
through creating”).

1.1.3.3 Cognition and Social Interaction

The MIT project, COG [15], was one of the first and noticeable groups that proposed
to set out with the ambition of creating a humanoid robot that exhibits various aspects
of “cognition” [16], ranging from basic visual and auditory attention [17], through
various aspects of childlike development [18]. Following a similar research approach,
in the work of Kawamura et al., they have been gradually building a humanoid system
that has similar cognitive ability to that of humans; their main goal is to develop a
system that can support elderly patients [19].

Around the end of the 2000s, a multimodal interactive humanoid system was
developed as a platform for the study of humanoid interaction [20]. The system,
ETL-Humanoid (see Figure 1.9), was developed at the ElectroTechnical Laboratory
(ETL) in Japan during the period of 1996–2001 [21]. This system was designed as a
research tool for exploring general principles of intelligent systems through interac-
tion with the changing world. Interactions involving visual, auditory, and the physical
all form part of its integration; one noticeable work yielded complex and meaningful
interaction with a human through exploiting a continuous sensory–motor cooperative–
competitive integration architecture, which demonstrated continuous adaptivity, re-
dundancy, and flexibility [22].
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FIGURE 1.10 Babybot from the LiraLab. (Courtesy of Giorgio Metta. With permission.)

At the same time, the LiraLab at the University of Genoa, Italy was attempting
to combine ideas from human development in the construction of their humanlike
system, Babybot (see Figure 1.10) [23]. Their robot learns through stages of develop-
ment to perform the basic task of reaching. One especially interesting feature of this
system is that the vision processing is performed through the use of a log-polarlike
CMOS camera, having pixels arranged in a configuration emulating that of the human
retina, from the center to the periphery in dense to sparse pixel arrangements. This
emulation shows that computation and information flow can be reduced, providing
the same visual capabilities as these of a child. Their approach makes a detailed at-
tempt in providing and demonstrating benefits of emulating details of biology in the
development of a sophisticated human-like robot [24].

A noticeable followup to the Babybot project is the European project RoboCub.
This integrated project aimed to develop a 3.5-year–old child-sized humanoid robot,
the iCub (see Figure 1.11), for the study of cognition through its implementation
of cognitive capabilities similar to those of a child [25]. Unlike many past projects,
this 5-year–long project continued to provide iCub as a humanoid robotic platform
for research; more than 20 iCub robots have been deployed in facilitating research
worldwide.

1.1.3.4 Social Interaction

One noticeable work in the area of social interaction is by a group in Japan. Investigat-
ing the use of robots to interact with autistic children, their aim or wish is ultimately
to draw out children with identifiable social defects and teach them to interact in
more humanlike ways. The robot is called “Infanoid” (see Figure 1.12) [26] and was
developed as a tool for this purpose. Preverbal communication in infants, that is, using
nonverbal means (e.g., gaze, gestures, etc.), plays a crucial role in human communica-
tion development. Children with autism who show typical communication disorders
cannot use these preverbal communication skills, which leads to serious impairment
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FIGURE 1.11 The iCub humanoid robot (iCub at the TUM-ICS lab). See color insert.

FIGURE 1.12 Infanoid. (Courtesy of Hideki Kozima. With permission.)
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FIGURE 1.13 ATR humanoid robot, DB (co-developed with SARCOS during the JST
Kawato Dynamic Brain Project). (Courtesy of Stefan Schaal. With permission.)

in social abilities and verbal communication. The aim of this ongoing project is to
understand the mechanism/development of human communication.

1.1.3.5 Humanoid Robot in Neuroscience

The Advance Telecommunication Research Institute was the first to propose that
a humanoid robot could actually contribute to neuroscience studies. In their work
they demonstrated several aspects of humanlike learning, and were successful in
applying these to humanoid robots [27]. The humanoid robot, DB (dynamic brain),
was specifically developed for this purpose (see Figure 1.13). The success of this
work set an important landmark in the application of scientific interchange between
engineers and neuroscientists.

1.1.4 CB—COMPUTATIONAL BRAIN

Following the guiding principles above, a 50-degrees-of-freedom humanoid robot,
CB, computational brain, was realized. CB is a humanoid robot created for exploring
the underlying processing of the human brain while dealing with the real world.
We place our robotic investigations within real-world contexts, as humans do. In so
doing, we focus on utilizing a system that is closer to humans in sensing, kinematics
configuration, and performance.
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FIGURE 1.14 The humanoid robot CB (computational brain).

We present the real-time network-based architecture for the control of all 50
degrees-of-freedom. The controller provides full position/velocity/force sensing and
control at 1 KHz, allowing us the flexibility in deriving various forms of control. A
dynamic simulator is also presented: the simulator acts as a realistic testbed for our
controllers, and acts as a common interface to our humanoid robots. A contact model
developed to allow better validation of our controllers prior to final testing on the
physical robot is also presented.

Three aspects of the system are highlighted in this chapter (1) physical power for
walking; (2) full-body compliant control, physical interactions; and (3) perception
and control, visual ocular–motor responses.

Our objective is to produce a richly integrated platform for the investigation of hu-
manlike information processing, exploring the underlying mechanisms of the human
brain in dealing with the real world. In this chapter, we present a humanoid robotic
system, a platform created to facilitate our studies.

Our focus is toward the understanding of humans, more specifically the human
brain, and its underlying mechanisms in dealing with the world. We believe that
a humanoid robot that is closer to a human being will facilitate this investigation.
Such a sophisticated system will impose the appropriate constraints by placing our
exploration within the context of human interactions and human environments. As a
result, a full-size humanoid robot CB (computational brain) was built to match closely
the physical capability of a human, thus making it suitable for the production of a
variety of humanlike behaviors, utilizing algorithms that originate in computational
neuroscience.

1.1.4.1 Outline

The following sections describe the physical robotic system and the supporting soft-
ware control architecture used in our research. We present experimentally three
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Wireless connection
(video/audio signals)

Remote distributed processing modules

Task Control Process

On-board Processor

Motor Control Process

Network 1: right leg/neck

N
etw

ork connection for debugging/testing

On-board processing modules

Network 2: left leg/torso

Network 3: right arm/right eye

Network 4: left arm/left eye

Left/right Hands

Distributed vision processing
Auditory processing

Learning modules

FIGURE 1.15 Overview of the CB research platform and setup, providing full support for
local processing for robot sensing and motor control, also showing that demanding high-level
processes are dealt with using remote distributed processors.

aspects of our system: (1) adequate performance; (2) force controllability; and (3)
perceptual abilities of our humanoid system.

1.1.5 RESEARCH PLATFORM—HARDWARE AND SOFTWARE ARCHITECTURE

In this section, a presentation of the hardware and software architecture of our research
platform, CB, is presented. An overview of the setup is depicted in Figure 1.15, Table
1.1 which, presents the overall technical specifications of the system and explains
their corresponding biological counterparts.
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TABLE 1.1
Overall Specification of Humanoid Robot—CB

Degrees of Freedom 50 in Total

Actively compliant Arms/Legs/Torso/Neck (34 DOFs) Central body parts of the humanoid

robot
Passively compliant Fingers/Eyes (16 DOFs) Forming two hands for manipulation
Weight 92Kg
Height 157.5cm Average person
Orientation sensors 2 × 6 DOF (translational and

rotational)

Emulating the vestibular system

Foot force sensors 2 × 6 DOF (left and right) Ground contact detection
Onboard computer Arbor PC-104 plus Em104P-

i7013/PM1400 1.4 GHz Intel

Pentium-M Processor

Acting as the motor controller of the

whole system, emulating the role of

the spinal column
Cameras 2× ELMO MN42H 17mm O.D.

(Peripheral)/2× ELMO QN42H 7mm

O.D. (Foveal)

Emulating both the peripheral and

foveal human visual systems

Microphones 2× SHURE Model MX180 Emulating human binaural hearing

system

1.1.5.1 Humanoid Robot—CB

The humanoid robot CB was designed with the general aim of developing a system
capable of achieving human capabilities, especially in its physical performance. CB,
the physical system, is of general human form; the following sections present the
basics of the system.

1.1.5.1.1 Mechanical Configuration

CB is a full-body humanoid robot. It is approximately 157.5 cm in height and approx-
imately 92 kg in weight. It has an active head system with 7 degrees of freedom (2 ×
2 degrees-of-freedom eyes, 1 × 3 degrees-of-freedom neck), 2 × 7 degrees-of-
freedom arms, 2 × 7 degrees-of-freedom legs, 1 × 3 degrees-of-freedom torso, and
2 × 6 degrees-of-freedom hands (see Figure 1.3), 50 degrees of freedom in total (see
Figure 1.1). The system has similar ranges of motion and physical performance as
a human person (as guided by human factors studies [19]). The system is able to
perform saccadic eye movements at up to 3 Hz (similar to that of humans). The hands
(as shown Figure 1.3) have been developed to provide basic functionality such as
grasping, pointing, and pinching.

1.1.5.2 Sensing Subsystems

The active head houses a set of inertial sensors (three-axis rotational gyro, three-
axis translational accelerometer). They are used to emulate the human vestibular
system (the inner ear), providing head orientation, as used for gaze-stabilization. An


